Step of Proof: equiv_rel_subtyping
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
equiv
rel
subtyping
:
T
:Type,
R
:(
T
T
Type),
Q
:(
T
).
EquivRel(
T
;
x
,
y
.
R
(
x
,
y
))
EquivRel({
z
:
T
|
Q
(
z
)} ;
x
,
y
.
R
(
x
,
y
))
latex
by ((RepUnfolds ``equiv_rel trans sym refl`` 0)
CollapseTHEN ((Auto_aux (first_nat 1:n
C
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
R
:
T
T
Type
C1:
3.
Q
:
T
C1:
4.
a
:
T
.
R
(
a
,
a
)
C1:
5.
a
,
b
:
T
.
R
(
a
,
b
)
R
(
b
,
a
)
C1:
6.
a
,
b
,
c
:
T
.
R
(
a
,
b
)
R
(
b
,
c
)
R
(
a
,
c
)
C1:
7.
a
: {
z
:
T
|
Q
(
z
)}
C1:
R
(
a
,
a
)
C
2
:
C2:
1.
T
: Type
C2:
2.
R
:
T
T
Type
C2:
3.
Q
:
T
C2:
4.
a
:
T
.
R
(
a
,
a
)
C2:
5.
a
,
b
:
T
.
R
(
a
,
b
)
R
(
b
,
a
)
C2:
6.
a
,
b
,
c
:
T
.
R
(
a
,
b
)
R
(
b
,
c
)
R
(
a
,
c
)
C2:
7.
a
: {
z
:
T
|
Q
(
z
)}
C2:
8.
b
: {
z
:
T
|
Q
(
z
)}
C2:
9.
R
(
a
,
b
)
C2:
R
(
b
,
a
)
C
3
:
C3:
1.
T
: Type
C3:
2.
R
:
T
T
Type
C3:
3.
Q
:
T
C3:
4.
a
:
T
.
R
(
a
,
a
)
C3:
5.
a
,
b
:
T
.
R
(
a
,
b
)
R
(
b
,
a
)
C3:
6.
a
,
b
,
c
:
T
.
R
(
a
,
b
)
R
(
b
,
c
)
R
(
a
,
c
)
C3:
7.
a
: {
z
:
T
|
Q
(
z
)}
C3:
8.
b
: {
z
:
T
|
Q
(
z
)}
C3:
9.
c
: {
z
:
T
|
Q
(
z
)}
C3:
10.
R
(
a
,
b
)
C3:
11.
R
(
b
,
c
)
C3:
R
(
a
,
c
)
C
.
Definitions
t
T
,
Trans(
T
;
x
,
y
.
E
(
x
;
y
))
,
Sym(
T
;
x
,
y
.
E
(
x
;
y
))
,
Refl(
T
;
x
,
y
.
E
(
x
;
y
))
,
P
&
Q
,
x
(
s
)
,
x
(
s1
,
s2
)
,
EquivRel(
T
;
x
,
y
.
E
(
x
;
y
))
,
P
Q
,
,
x
:
A
.
B
(
x
)
origin